Adjacency Maps and Efficient Graph Algorithms
نویسندگان
چکیده
Graph algorithms that test adjacencies are usually implemented with an adjacency-matrix representation because the adjacency takes constant time matrices, but it linear in degree of vertices lists. In this article, we review adjacency-map representation, which supports tests expected time, and show graph run faster maps than lists by a small factor if they do not one or two orders magnitude perform tests.
منابع مشابه
Homogeneity vs. Adjacency: Generalising Some Graph Decomposition Algorithms
In this paper, a new general decomposition theory inspired from modular graph decomposition is presented. Our main result shows that, within this general theory, most of the nice algorithmic tools developed for modular decomposition are still efficient. This theory not only unifies the usual modular decomposition generalisations such as modular decomposition of directed graphs or decomposition ...
متن کاملMerging Adjacency Lists for Efficient Web Graph Compression
Analysing Web graphs meets a difficulty in the necessity of storing a major part of huge graphs in the external memory, which prevents efficient random access to edge (hyperlink) lists. A number of algorithms involving compression techniques have thus been presented, to represent Web graphs succinctly but also providing random access. Our algorithm belongs to this category. It works on contiguo...
متن کاملSpace-efficient Basic Graph Algorithms
We reconsider basic algorithmic graph problems in a setting where an n-vertex input graph is read-only and the computation must take place in a working memory of O(n) bits or little more than that. For computing connected components and performing breadth-first search, we match the running times of standard algorithms that have no memory restrictions, for depth-first search and related problems...
متن کاملAdjacency metric dimension of the 2-absorbing ideals graph
Let Γ=(V,E) be a graph and W_(a)={w_1,…,w_k } be a subset of the vertices of Γ and v be a vertex of it. The k-vector r_2 (v∣ W_a)=(a_Γ (v,w_1),… ,a_Γ (v,w_k)) is the adjacency representation of v with respect to W in which a_Γ (v,w_i )=min{2,d_Γ (v,w_i )} and d_Γ (v,w_i ) is the distance between v and w_i in Γ. W_a is called as an adjacency resolving set for Γ if distinct vertices of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms
سال: 2022
ISSN: ['1999-4893']
DOI: https://doi.org/10.3390/a15020067